We are offering a 3 year position as a research fellow in **statistical inference for mechanistic models**. This is offered at either Postdoc or Senior postdoc level (equivalent grade to Assistant Professor) here in the Centre for Mathematical Medicine & Biology and Statistics & Probability groups, based in Mathematical Sciences, University of Nottingham.

We have started a Wellcome Trust funded project entitled “Developing cardiac electrophysiology models for drug safety studies”. This is an exciting opportunity to get involved in a substantial research team that will consist of at least two new postdoctoral research associate positions, together with Dominic Whittaker, me and a dedicated research software engineer Maurice Hendrix in collaboration with colleagues in statistics & probability within Nottingham (in particular Simon Preston and Theo Kypraois).

Over the last 10 years I’ve been doing cardiac modelling, I have come to think that our main problems in the field are related to reliably and reproducibly choosing and deriving biophysically-based mechanistic models from experimental data, and accounting for uncertainty whilst doing this. There are quite a few challenges involved, so many challenges that we held a month long residential programme on the challenges called the Fickle Heart at the Newton Institute in Cambridge this past summer (videos from final workshop available here).

You’ll find a lot of our open questions discussed in various past blog posts, but here are a few that we will be tackling in this grant:

- Deciding appropriate baseline models for the ion currents (see my talk at Banff research station on this topic), and parameterising these models effectively is a big pre-requisite for our research, which we’ve been working on recently in these papers – sinusoidal protocols, high-throughput model building. Open challenges on how to do model selection as well as parameterisation, whilst accounting for all models being imperfect. Selecting appropriate noise models for use in likelihood-based methods is an interesting part of this.
- Designing experiments to get information on drug binding to ion channels, and making sure that they can run on high-throughput automated machines. Open challenges in how to design these for (global) parameter optimisation, model selection, model validation, and to assess/capture/model the discrepancies.
- Tailoring mathematical action potential models to particular cell types, to make predictions of what drugs might do in different species and cell types. Again, we think that doing more informative experiments (working with the Christini lab to build on this) will help a lot.
- Considering all of this in
**a probabilistic/statistical framework**that accounts for uncertainty and variability in a lot of different aspects:- our datasets and the underlying biological systems,
- model parameters,
- model structures/equations themselves,
- discrepancy between models and reality,
- our subsequent drug safety predictions.

We’ll be working closely with: industry labs (in particular at GlaxoSmithKline and Roche); pharmaceutical regulators (including the FDA); and academic labs (in particular Teun de Boer’s lab in UMC Utrecht in the Netherlands and Adam Hill & Jamie Vandenberg‘s labs in Victor Chang Cardiac Research Institute, Sydney, Australia). So candidates must enjoy teamwork, collaborative inter-disciplinary projects, and be prepared to get into the lab for a few weeks to really get to grips with the experiments we are trying to infer things from.

If any of that sounds interesting to you – please do apply! Feel free to contact me with informal enquiries.

You can apply online here: https://www.nottingham.ac.uk/jobs/currentvacancies/ref/SCI362219. The deadline is Tuesday 5th November.

]]>So there are a few points to raise about good old Hodgkin-Huxley models in this blog post!

- There’s a recent set of papers updating the original papers for modern conventions.
- I’ve sketched how (in the case of ‘powered’ gates) different equivalent Markov models can be written down for the same Hodgkin-Huxley model.
- A widely followed but rarely-expressed convention for the Markov diagrams.

Recently my colleague Angus M Brown at the University of Nottingham published some updates to the landmark (and Nobel-prize winning) series of papers published in the Journal of Physiology in the 1940s-1950s by Hodgkin & Huxley:

We now have updated classic #electrophysiology papers by Hodgkin, Huxley and Katz, so that the topics are much more understandable for students. Check out all the translations now: https://t.co/VLlNfKclRH pic.twitter.com/qvjyZwzisL

— Journal of Physiology (@JPhysiol) July 15, 2019

I think this is great – there have been changes in conventions since the original papers were published (in particular the sign of Voltage/membrane potential, which is also now relative to earth rather than relative to resting potential). The changes are discussed in the editorial accompanying the papers.

So there is an updated set of equations for the squid axon action potential model in the ‘translated’ 1952 paper. I’d strongly recommend pointing students and colleagues towards this translation instead of the original paper, as I think it resolves a lot of confusions that can arise in trying to do all these convention changes (which you might not even be aware of!) in your head.

Quite a few people have asked me how the equivalence between Hodgkin-Huxley gating variables and Markov models works. So I thought I’d sketch it out – my effort is in Figure 1.

The same procedure holds for higher powers, so that an m^3 Markov model has three closed states and rates of 3α, 2α, α on the top and β, 2β, 3β on the bottom.

Now you haven’t really gained anything by re-casting like this (as it adds an equation in the case I’ve showed above). But if you come to modify the model so that something (like a drug) is interacting with just one of the states and breaking all the independence and symmetry in a Hodgkin-Huxley model, then being able to work out the Markov Model is necessary to simulate what happens then.

It took me quite a while working in the field of cardiac electrophysiology to realise that an implicit (and, as such, not always followed!) convention in these diagrams is to have voltage underlying the axes, as I’ve sketched in Fig 2.

So if you have a choice* try to present the diagrams such that increasing voltage pushes you right and up!

First paper was led by Michael Clerx and is called “Four Ways to Fit an Ion Channel Model” we thought that a recipe or tutorial about how to make a Hodgkin-Huxley model for a voltage-gated ion channel was needed: why the protocols for ‘activation’, ‘deactivation’, ‘inactivation’ etc. are designed the way they are, how you can assemble data from them to fit time-constant and steady state curves, and which numerical schemes are sensible to use for doing this. In a lot of ways this paper is the partner for Kylie’s sinusoidal clamp paper that we published last year, which explains how people have typically done it, and then goes on to weigh up the pros and cons by trying the four different methods on the same dataset. The basic ways are:

- Method 1: Fitting the model’s analytic equations for steady-states and time constants (e.g. m
_{∞}and τ_{m}for a gating variable m) directly to experimentally-derived current-voltage (I-V) and time-constant-voltage (τ-V) curves. This is generally a bad idea if you have more than one gate (for IKr at least, their timescales of gating aren’t as independent as this concept really needs them to be – e.g. inactivation mucks up your measurement of activation). You can show the problem quite easily by running a model forwards with some assumed gating properties. You then simulate the experiment and its post-processing to emulate experimental measurement of steady state and time constant gating properties – you get back different ones than the underlying equations suggest! But this method remains widely used in the literature. - Method 2: one way round the problem above is simulating the experiments and then deriving I-V and τ-V curves by postprocessing simulated currents, and then fitting these to data. So you get a model whose parameters are consistent with the data. BUT the optimisation problem becomes very hard because of the postprocessing steps to derive I-V and τ-V curves introducing more jumps and discontinuities in the objective function. There can be ‘divide by small number’ effects in the postprocessing, or long time constants fitted to flattish data, that lead to a lot of error on certain summary curve data points too.
- Method 3: Simulating the traditional experiments and fitting directly to experimental current traces. This works surprisingly well, we had thought this optimisation would be difficult and need careful consideration of weighting traces and suchlike, but even a simple approach worked well, and better than Methods 1 and 2.
- Method 4: Kylie’s sinusoidal clamp method. Experiments are very short (hence easier than Method 3), fitting is very simple and reliable.

A few highlights to look out for in this one:

- A phase-plane plot method really helps understanding of the traditional protocol design, see Fig 1:

- Some tips and tricks for reliable parameter optimisation (including the role of parameter transforms, sensible bounds for voltage-dependent ion channel rate parameters, and the solver tolerance issue discussed on this blog before).

The second paper is by Chon Lok Lei, he created a new Method 4 discussed above, but instead of using the sinusoidal clamp, made a similar ‘*Staircase Protocol*‘ out of conventional steps and ramps which was able to run on a high-throughput 384 well Nanion SyncroPatch machine. This has some distinct advantages: Chon Lok got 124 good cell recordings, in one run of the machine, in about half an hour; compare this to manual patch where getting 10 nice stable cell recordings might take a week or more! So we hope this will let people create models of variants of this channel (e.g. mutations) and what happens to it under drug action much more easily than before. Some important points:

- Fitting the same model using the staircase method returned very similar parameter sets to our previous manual-patch sinusoidal study.
- There’s some nice mostly-automated quality control criteria used in addition to the usual series resistance, seal resistance and cell capacitance.
- There’s some work on leak current and drug-subtraction to isolate IKr that will be worth looking at if you want to repeat such escapades.
- We did 8 validation protocols alongside the staircase protocol that we used for fitting, and got some excellent predictions, for instance Fig. 2:
- A hierarchical statistical model allowed us to describe the variability that we saw fitting to data across all the wells.
- The paper includes the invention (we think!) of the ‘
*reversal ramp*‘ to estimate error in applied voltage clamp, a special bit of the protocol designed to estimate an artefact in the experiment (a bit like a leak step does). Due to the parallel nature of the experiment and shared solutions/temperature this allows an estimate of this error in each individual well as shown in Fig 10 of the paper (small, but as we’ll see, maybe now the main source of error…). - Some strong circumstantial evidence that the principal variability in kinetic parameters fitted to different cells is due to this voltage clamp error rather than extrinsic variability between cells (see Fig. 9 of the paper).

The third and final paper, again by Chon Lok, uses the Staircase Protocol method introduced above to examine the temperature dependence of the parameters we get back. In essence we repeat the experiment at five distinct temperatures, so we can plot out how they vary with temperature. We can then compare this with how they should ‘theoretically’ vary with temperature following either:

- The commonly-used Q10 formulation.
- The sometimes-used (what we called ‘typical’) Eyring formulation (not actually as per Wikipedia – a voltage-dependent term is added to the Wikipedia definition in previous ion channel modelling! See our paper for the typical definition).
- The never-used in ion channel modelling (as far as we know!) Generalised Eyring formulation.

The punchline is that there’s strong evidence that Q10s are insufficient as they don’t give you any temperature-dependence on the parameter that governs the voltage dependence of the rate. But a strong dependence certainly appears in our refitted models. The typically-used Eyring formulation does confer some temperature dependence to this parameter, but is actually no better as the temperature-dependence can sometimes be constrained to be in the wrong direction (increasing with temperature instead of decreasing or vice-versa). The more generalised Eyring formulation, previously used in some electrical engineering battery applications, appears to work pretty well. So some significant consequences for any work that is relying on previously-used formulations for temperature dependence of voltage-dependent rate parameters.

If we are right, and the temperature dependence doesn’t follow a Q10, then we expect Q10 estimates to be protocol-dependent, and indeed we can explain some “this paper’s Q10 estimate was higher than this paper’s” (but not all) using our full temperature model with previously used protocols from the literature.

Our punchline is that you probably need to do the experiments at 37°C to be confident you are predicting well there.

In the discussion there are some interesting questions raised about whether the model breaking the first-principles ‘Typical Eyring’ formulation is actually a signpost that the model has some shortcomings/discrepancy, would a better mathematical model follow the first principles trends? Or is the need for a Generalised Eyring relation just a sign that the ‘single energy barrier’ model that the first principles rate equations assume is too simple for a large protein complex which may shift its preferred conformations with temperature. Open question!

Anyway, hope you enjoy the papers: one, two, three; comments welcome below.

]]>Here’s a great opportunity to join our team at the University of Nottingham on a 5 year Research Software Engineering (RSE) position:

https://www.nottingham.ac.uk/jobs/currentvacancies/ref/IS046219

The deadline for applications is 3rd March 2019.

People might not be too familiar with the concept of an ‘RSE’: UK funders and universities have recognised recently, and formally, that there needs to be a career path for people specialising in software engineering for research codes – see the UK RSE homepage for more info. So if you really enjoy the coding aspect of your research it might be the job for you! I am looking for someone with a PhD involving any aspect of computational research who still wants to be involved in doing cutting edge research and publishing, whilst focussing on professional levels of software development to underpin our research and its application to real world problems. You will be working closely with a team of post-doctoral researchers in our group in the Centre for Mathematical Medicine & Biology within Mathematical Sciences for 80% of your time, along with industrial collaborators and experimental academic groups. This is a unique arrangement with your job based in the university’s Digital Research Team so that you can continue to learn software skills there for the remaining 20% of your time. At the end of the 5 years your role will turn into a permanent job within the university’s RSE group.

Some of the software you’ll be involved in developing includes:

- Chaste – our C++ cardiac electrophysiology simulator, the back-end simulation engine for a lot of our work.
- libcellml – the API for the CellML markup language, giving access to hundreds of electrophysiology models in a standardised format.
- The Cardiac Electrophysiology Web Lab – a web-based platform for documenting and reproducing the behaviour of models in different experimental simulations, comparing against experimental data, and documenting the process of deriving a model from data.
- PINTS – probabilistic inference for noisy time series (python). Our main optimisation/inference software that forms the statistical back end for the Web Lab.
- ApPortal – a web portal for safety pharmacology that provides a user-friendly interface to a Chaste-based simulator to run simulations, store and view their results.

Please don’t be put off if you don’t know all those languages and things inside out now, we are looking for someone who can learn them and has enthusiasm for open source software in research. Please get in touch with me if you have any questions about the job.

There are some other jobs being advertised in Nottingham’s Digital Research Team that you might like to have a look at too!

]]>This post is to let people know about some opportunities for postdoctoral research here in the Centre for Mathematical Medicine & Biology, based in Mathematical Sciences, University of Nottingham.

We are starting a new Wellcome Trust funded project in 2019 entitled “Developing cardiac electrophysiology models for drug safety studies”. As you’ll see from some of the previous blog articles, and associated work on the CiPA project, we’ve been working on ways to understand and predict how certain pharmaceutical drugs are associated with increased pro-arrhythmic risk by using mathematical models of ion channel currents and cardiac cells.

This is an exciting opportunity to get involved in a substantial research team that will consist of at least three postdoctoral research associate positions, together with me and a dedicated research software engineer. We’ll be working closely with industry labs in particular at GlaxoSmithKline and Roche; pharmaceutical regulators including the FDA; and academic labs – in particular Teun de Boer’s lab in UMC Utrecht in the Netherlands and Adam Hill & Jamie Vandenberg‘s labs in Victor Chang Cardiac Research Institute, Sydney, Australia. So candidates must enjoy teamwork, collaborative inter-disciplinary projects, and be prepared to get into the lab and do some of their own experimental work to really get to grips with what we are trying to simulate.

There are quite a few challenges in this area, aspects of which you’ll find discussed in various past blog posts, but here are a few that we will be tackling in this grant:

- Designing experiments to get information on drug binding to ion channels, and making sure that they can run on high-throughput automated patch clamp machines.
- Deciding appropriate baseline models for the ion currents (see my recent talk in Banff on this topic), and parameterising these models effectively is a big pre-requisite for this, which we’ve been working on recently.

- Simulating drug effects on the whole cell level
- Tailoring mathematical action potential models to particular cell types, to make predictions of what drugs might do in different species, or stem-cell derived myocytes versus adult human cells. Again, we think that doing more informative experiments (working with the Christini lab to build on this) will help a lot.

- Comparing whole cell simulations with later safety test results: to see whether we quantitatively understand what the drugs are doing, or whether we see unexpected things.
- Considering/building all of this in a probabilistic/statistical framework that accounts for uncertainty and variability in a lot of different aspects:
- our datasets / biological systems,
- model parameters,
- model structures themselves,
- discrepancy between models and reality,
- our subsequent decisions / risk predictions.

- And working on open source software tools that everyone can use for these tasks.

If any of that sounds interesting to you – please do apply! Feel free to contact me with informal enquiries.

There is a relevant job advert out now for fixed-term 3 year positions, available to start as soon as possible, details here: Research Associate/Fellow – up to two postdoctoral research positions (closing date for applications is 16th Jan 2019):

**Either**for people with experience in computational modelling of biological systems;

**OR**- for people with experience in statistics/inference – in which case
**no**previous experience of biological research is required.

There are also PhD positions available, see: “Optimising experiments for developing ion channel models” which is fully funded for UK and EU students, details here: https://www.nottingham.ac.uk/mathematics/prospective/research/maml.aspx

]]>This post is for people interested in doing optimisation or inference with Differential Equation (DE) models.

If you are a statistician, you might be used to treating model simulators as black boxes where you can stick parameters in and get outputs out. This post is about why you need to be a bit careful with that. It examines one of the quirks of working with differential equations and optimisation/inference that my team have bumped into in a few distinct situations – including simulators given out for public optimisation competitions! I haven’t seen it referred to in any of the textbooks, but please let me know in the comments if you have.

Below in Figure 1 is a likelihood surface (or objective function) that we came across (more on the definition of it below), as a function of one of the parameters in a cardiac action potential model. We are trying to find the maximum in this case.

Not all optimisers rely on a nice smooth gradient – but they do all enjoy them! This is a horrible surface and no matter what kind of optimiser you use it is going to struggle to move around and explore something that looks like this. The red line marks the data-generating value in this case, and the green is somewhere we got stuck. Remember this is only in one dimension, now imagine it in ten or more…

To make matters worse, we might want to run MCMC on this surface to get a posterior distribution for the parameter on the x-axis. We see that there are ‘spikes’ of about 40 log-likelihood units. What does that mean? Well if we are talking about the probability of accepting a trough from a spike in Figure 1 using an MCMC Metropolis-Hastings step, that equates to an acceptance ratio of exp(-40) = 4×10^-18 ! Our chains will certainly get stuck and never move across this space nicely.

Is the problem really so non-linear that is has got thousands of local minima, or modes in a posterior, as this suggests? Thankfully, the answer is ‘No’!

After a bit of detective work we figured out that this bumpy surface is entirely due to numerical error in our simulation, and it should be completely smooth! The example is from an Ordinary Differential Equation (ODE) solver but Partial Differential Equation (PDE) solvers will also give the same behaviour.

Most of the time we can’t derive exact analytic solutions to our models’ equations, so we have to use numerical solution techniques; the simplest of these is the Forward Euler method. These numerical methods give you only an approximation to the solution of your equations, which you try to ensure is accurate by taking more computational effort by adding steps in your approximation (finer time steps) and checking the solution is converging to an answer. As you keep refining, the solution should change less and less.

Broadly speaking we can classify the different ODE solvers into: ** fixed step**, like the Forward Euler method, that take the same size time steps as they go along; and

With an adaptive time-step solver you give a target tolerance (relative to the size of the variables (RelTol), or absolute (AbsTol), or typically both) and it refines the steps to try to maintain these tolerances on each step. In the example here we used CVODE but another common one is the Matlab ode15s stiff ODE solver. The same principle would also apply if you use a fixed-step solver, it would need smaller time steps rather than tighter tolerances.

In Figure 2 we show the shift in the likelihood surface as we tighten the ODE solver tolerances (Relative, Absolute in brackets above each plot):

In general RelTol = 10^-4 and AbsTol = 10^-6 are not unreasonable choices for a single ODE solve, indeed Matlab’s *defaults* are RelTol = 10^-3 (less precise than Figure 1) and AbsTol = 10^-6 (the same).

So why is this effect so big?

**Likelihoods**

A very common assumption is that a ‘data generating process’ (the way that you end up with observations that some instrument records) is:

data = reality + observation noise on each data point

Another common assumption is that the noise here is Gaussian, **independent** on each data point and **identically-distributed** (comes from a Normal distribution with the same mean (often zero) and standard deviation), this is known as “**i.i.d.**” Gaussian noise.

A third assumption is that ‘reality’ in our equation above is given by the smooth noise-less model output. This is obviously a bit shaky (because no model is perfect), but the idea is you can still get useful information on the parameters within your model if it is close enough (N.B. bear in mind you might get overconfident in the wrong answer – this is a good paper explaining why). So we then commonly have:

data = model output + i.i.d. Gaussian noise.

We can then write down a log-likelihood (log just because it is easier to work with numerically…) and we end up with a big sum-of-square errors across all of our time trace:

(see the Wikipedia derivation from the Normal probability density function). Here we take the mean to be the model output given some parameter set; x to be the observed data points and sigma is the i.i.d. noise parameter.

The reason that we have come across this problem perhaps more than other people isn’t that we have been more sloppy with our ODE solving (we put some effort into doing that relatively well!), but that we are dealing with problems that consist of high frequency samples of time-series data. We commonly work with a few seconds of 10kHz time sampled recordings, so we can end up with around 100,000 data points.

Why is this important? Say your simulation and data diverge by >=1.1 standard deviations of the noise level (P<0.86 in a statistics table) instead of >= 1 standard deviation (P<0.84) because of numerical error. If this happens at 100 time points then your probabilities multiply and become 0.86^100 = 5×10^-7 and 0.84^100 = 3×10^-8. It has become almost ten times less likely that your parameters gave rise to the data because of your numerical error that had a relatively small effect on the solution at each time point. As we have more and more data points, this effect is exaggerated until even tiny shifts in the solution have huge effects on probabilities, as we saw above.

There’s a slight subtlety here: you might have already checked that your solution is converging to within a pre-specified tolerance *for a given parameter set. *For example a modeller might say “I don’t care about changes of less than 0.01% in these variables, so I set the solver tolerance accordingly” then a statistician treating the simulator as a black box might just run with that. But what is important here is not the error bound on the individual variables at a given parameter set, but the error bound that the likelihood transformation of these variables demands in terms of reducing jumps in likelihood *as a function of parameters*. So the modeller and statistician need to talk to each other here to work out whether there might be problems…

**Conclusions**

I wouldn’t be surprised to find that this is one of the reasons people have found the need to use things like genetic algorithms in cardiac problems. But I suspect the information content, un-identifiability and parameter scalings are also very important factors in that.

So what should you do?

Examine * 1D likelihood slices.* We can fix all parameters and vary one at a time, plotting out the likelihood as above. Then tighten your solver tolerances until 1D slices of your likelihood are smooth enough for optimisers/MCMC to navigate easily. Whatever this extra accuracy costs in additional solver time will be compensated in far more efficient optimisation/inference (in the examples we have looked at, the worst cost is approximately just 10% more solve time for a solve with 10x tighter tolerances, resulting in thousands of times speed up in optimisation).

What about * thinning the data*? A way to get rid of this problem would be to remove a lot of data points. Something that’s called ‘thinning’ in the MCMC literature (although it usually refers to the MCMC chain afterwards rather than the data). I’m not a fan of doing it to the data. It will artificially throw away information and make your posteriors wider than they should be according to your noise model. You might not completely trust your likelihood/noise model, but thinning doesn’t automatically fix it either!

Finally, this post wouldn’t be complete without mentioning that there is a relatively new way to consider this effect, which explicitly admits that we have error from the solver, and treats it as a random variable (which can be correlated through time):

data = model + numerical approximation error + observation noise.

Dealing with this formulation is the field known as *probabilistic numerics* – see the homepage for this, and you can use it to make MCMC take account of numerical errors. In our case, I expect this approach could help by effectively warming up (c.f. tempering methods) the likelihood and making the spikes relatively smaller and more jump-able. Interestingly, in the above plots you can see that this isn’t independent noise as you move through parameter space, I don’t know enough about the subject to say whether that has been handled or not! Whether it is worth the extra complication I’m not convinced. Maybe for big PDE models it will be worth the trouble, but for the reasonably lightweight ODEs involved in single cell cardiac work it is probably just worth solving more accurately all the time.

On the 9th November 2017 the CiPA in-silico Working Group hosted a meeting in Toronto General Hospital that the Cardiac Physiome meeting kindly let us run as a satellite meeting – a big thanks to them for organising the logistics of room booking etc.

The in-silico aspects of CiPA are led by the FDA Center for Drug Evaluation and Research. You might find the background document that we put together useful if you haven’t heard of CiPA. I’ve also written a post on the idea before. The FDA team let me organise this long half day with the following aims:

- To inform the cardiac modelling community about the CiPA initiative.
- To get feedback on the FDA’s work to date.
- To draw attention to other research in the area they might not have been familiar with.
- To discuss the next steps.
- To spark more research and collaborations in this area.

It was a fascinating and thought provoking day, plenty of work for us to do, as you’ll see on my summing up slides at the end of the day. Here are links to all the talks, that you can also find in a Figshare Collection.

- David Strauss (FDA): Introduction and Regulatory Perspective
- Then we had some talks on hERG modelling, the appropriate Markov model structure to use for the baseline/control, and also how to measure drug binding kinetics and their importance:
- Kylie Beattie (FDA, GlaxoSmithKline): Selecting a model of hERG channel kinetics and drug binding
- Wendy Wu (FDA): An experimental perspective on measuring ion channel block
- Randall Rasmusson (Buffalo): Modeling HERG and IKr for pro-arrhythmic drug interactions
- Adam Hill (Victor Chang): Measuring (and modelling) kinetics of drug binding to hERG – does it matter and can we do it?

- We then considered the process of testing and optimising the baseline action potential model (O’Hara-Rudy 2011) for studying drug action:
- Zhihua Li (FDA): Optimization of Cardiac Myocyte Model for CiPA Initiative
- Trine Krogh-Madsen (Cornell): Global optimization of ventricular myocyte model to multi-variable objective improves predictions of drug-induced Torsades de Pointes

- This was followed by a talk on modelling stem-cell derived myocytes
- Brian Carlson (University of Michigan): An Expression-based Theoretical Model of Human iPSC-derived Cardiomyocytes

- Then the role of L-type Calcium channel and the importance of characterising its baseline/control kinetics when considering conductance block effects at the action potential level
- The next section looked at how we might validate model predictions, which started with the FDA team outlining their choice of metric, validation plans, and how they had performed Uncertainty Quantification.
- We then considered whether far simpler models could give the same kind of predictions
- Jaimit Parikh (IBM): Do in-silico models provide improved risk prediction of

drug-induced Torsades de Pointes?

- Jaimit Parikh (IBM): Do in-silico models provide improved risk prediction of
- Then finished this section by considering whether real-world risk data could be used to continually update risk categories and move to a more continuous risk score
- Mark Davies (QT Informatics): Our validation criteria should be determined

by our understanding of the road ahead

- Mark Davies (QT Informatics): Our validation criteria should be determined
- There then followed a discussion panel made up of Elisa Passini, Ele Grandi, Sebastian Polak and myself.
- Finally we did a bit of summing up before a well-earned meal and drinks!
- Gary Mirams (Nottingham): Summing Up

]]>

In their 2009 simulation study comparing properties of Hodgkin Huxley vs. Markov Models (well worth a read) Martin and Denis discussed how an optimised short voltage step protocol might contain enough information to fit the parameters of models (termed an ‘identifiable’ model/protocol combination) in a relatively short amount of experimental time.

We picked up on these ideas when Kylie came to look at models of hERG. We originally wanted to study different modes of drug binding with hERG and design experiments to quantify that. Unfortunately, it rapidly became clear there was little consensus on how to model hERG itself, before even considering drug binding.

OK, so we have lots of different structures, but does this matter? Or do they all give similar predictions? Unfortunately – as we show in Figure 1 of the paper – quite a wide variety of different current profiles are predicted, even by models for the same species, cell type and temperature.

So Kylie’s PhD project became a challenge of deciding where we should start! What complexity do we need in model of hERG (for studying its role in the action potential and what happens when it is blocked), and how should we build one?

These questions link back to a couple of my previous posts – how complex should a model be, and what experiments do we need to do to build it? Kylie’s thesis looked at the question of how we should parameterise ion channel models, and even how to select the right ion channel model to use in the first place. We had quite a lot of fun designing new voltage clamp protocols and then going to a lab to test them out. The full story is in Kylie’s thesis, and we present a simpler version that just shows how well you can do with one basic model in the paper.

Kylie did a brilliant job, and as well as doing all the statistical inference and mathematical modelling work, she went and learnt how to do whole-cell patch clamp experiments herself as well at Teun de Boer’s lab and also with Adam Hill and Jamie Vandenberg. Patch clamp is an amazing experimental technique where you effectively get yourself an electrode in the middle of a cell, my sketch of how it works is in Figure 2.

We decided that the traditional approach of specific fixed voltage steps (which neatly de-couples time- and voltage-dependence) was a bit slow and tricky to assemble into a coherent model. So we made up some new sinusoid-based protocols for the patch clamp amplifier to rapidly probe the voltage- and time-dynamics of the currents. Things we learnt along the way:

- Whilst it might work in theory for the model, you also might fry the cells in real life (our first attempts at protocols went up to +100mV for extended periods of time, which cells don’t really like).
- HEK and CHO cells have their own voltage-dependent ion channels (which we call ‘endogenous’ voltage-dependent currents) which you can activate and mix up with the current you are interested in.
- It’s really important to learn what all the dials on a patch clamp amplifier do(!), and adjust for things like liquid junction potential.
- Synthetic data studies (simulating data, adding realistic levels of noise, and then attempting to recover the parameters you used) are a very useful tool for designing a good experiment. You can add in various errors and biases and see how sensitive your answers are to these discrepancies.
- Despite conductance and kinetics being theoretically separable/identifiable, and practically in synthetic studies, we ended up with some problems here when using real data (e.g. kinetics make channel ‘twice as open’ with ‘half the conductance’. You can imagine this is impossible if the channels are already over 50% open, but maybe quite likely if only 5% of the channels are open?). We re-designed the voltage clamp to include an activation step to provoke a nice large current with a large open probability, based on hERG currents people had observed before.

But to cut a very long story short – it all worked better than we could have imagined. Figure 3 shows the voltage protocol we put into the amplifier, and the currents we recorded in CHO cells that were over-expressing hERG. We then fitted our simple Hodgkin-Huxley style model to the current, by varying all of its parameters to get the best possible fit, essentially.

So a great fit, but that doesn’t mean anything on its own – see my previous post on that. So we then tested the model in situations that we would like it to make good predictions, here under cardiac action potentials and also slightly awry ones, see Fig 4.

We repeated this in a few different cells, and this lets us look at cell-cell variability in the ion channel kinetics via examining changes in the model’s parameters. Anyway, that is hopefully enough to whet your appetite for reading the whole paper! As usual, all the data, code, and (perhaps unusually) fitting algorithms are available for anyone to play with too.

**Wish list: if you can help with any of these, let’s collaborate! Please get in touch.**

- A better understanding of identifiability of conductance versus kinetic parameters, and how to ensure both.
- A way to design voltage clamp protocols for particular currents (this was somewhat hand tuned).
- A way to select between different model structures at the same time as parameterising them.
- A way to say how ‘similar’ (in terms of model dynamics?) a validation protocol is to a training protocol. If validation was too similar to training, it wouldn’t really be validation… we think our case above is ‘quite different’, but could we quantify this?
- A way to quantify/learn ‘model discrepancy’ and to put realistic probabilistic bounds on our model predictions when we are using the models “out in the wild” in future unknown situations.

**hERG* is the gene that encodes for the mRNA that is translated into a protein that assembles into homotetramers (groups of four of the same thing stuck together) in the cell membrane. This protein complex forms the main part of a channel in the cell membrane (Kv11.1) that carries the ionic current known as the “rapid delayed rectifier potassium current” or I_{Kr}. So you can see why we abuse the term hERG and say things like “hERG current”!

I am a massive fan of open access publication and open science in general. It is quite sensible that the public gets to read all of the research they are funding, and it has to be the best way to share ideas and let science happen without any barriers.

But I’m sure we aren’t doing it very efficiently at the moment, some very well-intentioned policies are making publishing a real nuisance in the UK.

Here’s a list of the all the places where papers we are publishing at the moment are ending up. When you google a paper title, you are likely to find hits for all of these, you have to hope that they all ended up being the same final version of a paper, and aren’t really sure which is best to look at:

**On ArXiv/BioRxiv**– I think preprint servers are a great way to make a version of your paper open access, get it google-able, and get feedback on it. So we put up papers on BioRxiv, and try (but sometimes forget) to make sure they are updated to match the final accepted article in a journal.**In the actual journal**– this is generally the nicest to look at version (but not always!). My funders like to have their articles under a CC-BY licence, which is a great idea, but it generally means a Gold route for open access with quite high fees.**On PubMedCentral(PMC)**or Europe’s version (or usually for us, both) – PMC is funded by the NIH, the USA’s main medical research agency, and any papers they funded also have to deposit a version with PMC. This applies even if it is open access – fair enough – I imagine it’s a good idea to have an ‘official backup’ in case a journal shuts down for any reason. Since my funders go for Gold open it is somewhat redundant, and confuses people when they search on PubMed and have to choose which version to look at, but at least it is a big repository with almost all biomedical research in one place (give or take the European version – please just pool your resources EU and USA! Does Brexit mean we’ll also have to put a version in a UK-PMC too? Probably… groan).**On a university/institutional archive**– the UK powers-that-be have (very sensibly) decided that (almost) all papers have to be available open access to be eligible for consideration as part of the next Research Excellence Framework which decides how much public money universities get. As far as I can work out, every single university has decided (very un-sensibly) that the only way to ensure this is to launch their own individual paper repository where they also host another open access version of the paper. Ours is called ePrints.**On a couple of other institutional archives**– nearly all my papers have co-authors in other universities, who also have to submit the paper again to their own institutional repositories!

So, every single university in the UK is creating the IT databases, infrastructure, front-ends to host large numbers of research papers in perpetuity; as well as employing staff to curate and chase academics to put the right versions into the right forms at the right time with the right licences to keep everyone happy, mostly for papers that are already available open access elsewhere. This is an insane use of resources.

The only thing I can suggest is that UK REF people clarify that any paper that has a final open access accepted text in either arXiv/BioRXiv/a journal/PMC/EuropePMC is automatically eligible. For papers that doesn’t cover, the universities need to get together to either: beef up support for subject-specific repositories; or, just fund a single central repository between them, with a good user interface, to cover any subjects that fall down the cracks between the reliable subject repositories above. Maybe the sort of thing our highly-paid VCs and UUK should be organising

]]>

Another short post, just to advertise a postdoctoral research associate (PDRA) position available to work with me. It’s a two year position, based at the Centre for Mathematical Medicine & Biology at the University of Nottingham, with the potential to visit labs around the world to get hands-on experimental experience.

The subject of the postdoc position will be designing new experiments to get as much information as we can on how pharmaceutical compounds bind to ion channels and affect the currents that flow through them. As part of this I would like to explore how to characterise and quantify model discrepancy, and design experiments for that, as well as model selection and parameterisation of the models.

We’ll then use the data generated by these experiments to build models of pharmaceutical drug interactions with ion currents, working with partners in pharmaceutical companies and international regulators to test out these new models. The project will involve learning some of the modelling behind electrophysiology and pharmacology, as well as data science/statistics behind designing experiments and choosing models and parameters. It will build on some of our recent work on novel experimental design, some of which is available in a preprint here.

See http://www.nottingham.ac.uk/jobs/currentvacancies/ref/SCI308217 for details and links to apply. Closing date is Wed 4th October. Informal enquiries to me are welcome (but applications have to go through the official system on the link above).

Gary

]]>